

Large-Scale 3D Scene Reconstruction with NeRF

Songyou Peng

ETH Zurich and Max Planck Institute for Intelligent Systems

Stanford Computational Imaging Lab
Oct 26, 2022

Who Am I?

- PhD Student since 2019.09
 - Marc Pollefeys
 - Andreas Geiger
- Internships during PhD
 - 2021: Michael Zollhoefer
 - Ongoing: Tom Funkhouser
- Open to 1:1 chat!

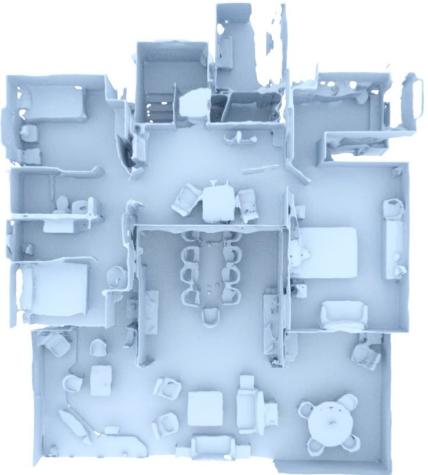
ETH zürich

MAX PLANCK INSTITUTE
FOR INTELLIGENT SYSTEMS

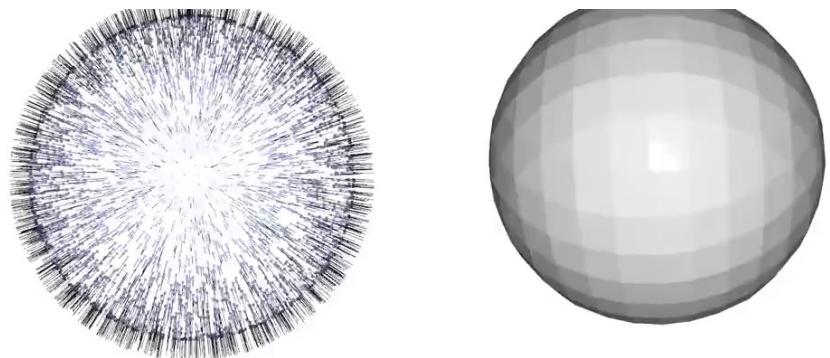
Meta
Google Research

pengsongyou.github.io

My PhD Topics: Neural Scene Representations for 3D reconstruction, novel view synthesis, and SLAM



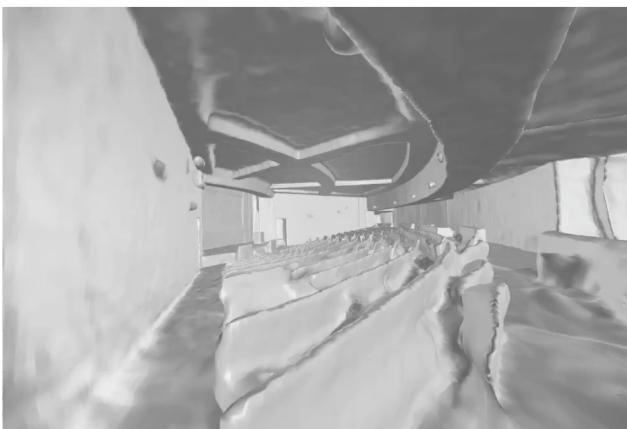
Convolutional Occupancy Networks
ECCV 2020 (Spotlight)



Shape As Points
NeurIPS 2021 (Oral)

KiloNeRF
ICCV 2021

UNISURF
ICCV 2021 (Oral)



Ours
MonoSDF
NeurIPS 2022

NICE-SLAM
CVPR 2022

NeRF is awesome!

Some problems still exist...

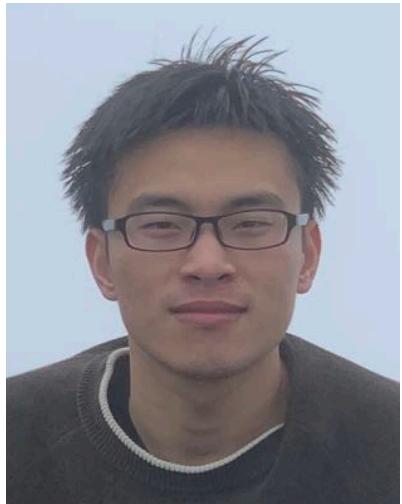
- 😢 Poor underlying geometry
- 😢 Camera poses needed

😊 MonoSDF

😊 NICE-SLAM

NEURAL INFORMATION
PROCESSING SYSTEMS

MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface Reconstruction



Zehao Yu

Songyou Peng

Michael Niemeyer

Torsten Sattler

Andreas Geiger

Neural Implicit Surfaces with Volume Rendering

RGB Images

NeuS/VoISDF/UNISURF

NeRF

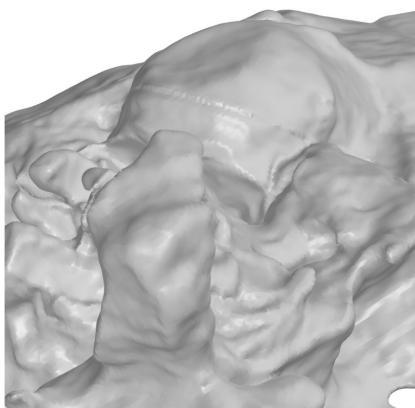
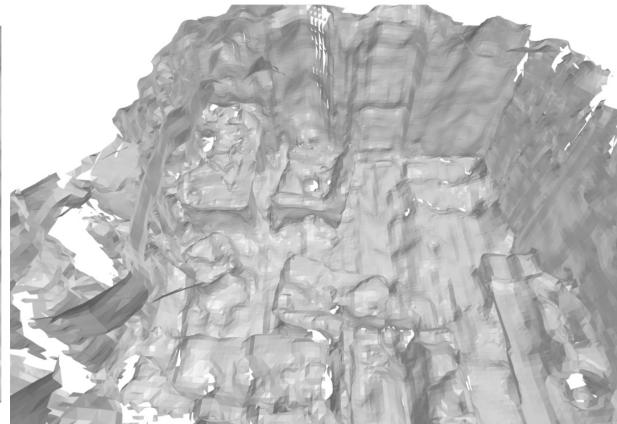
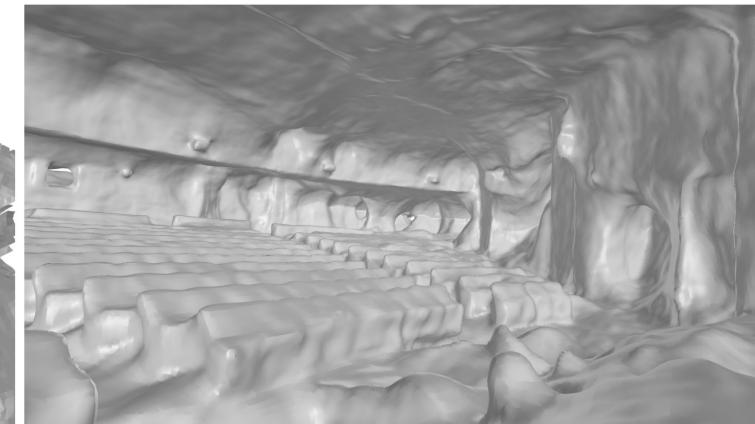
[1] Oechsle, Peng, Geiger: [UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction](#). ICCV, 2021

[2] Wang, Liu, Liu, Theobalt, Komura, Wang: [NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction](#). NeurIPS, 2021

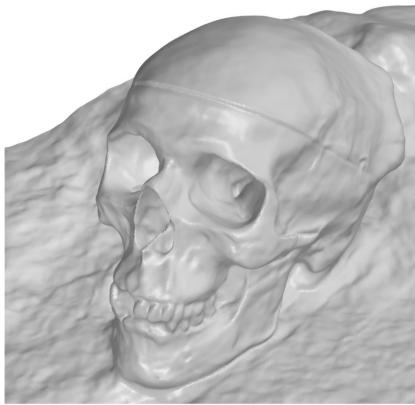
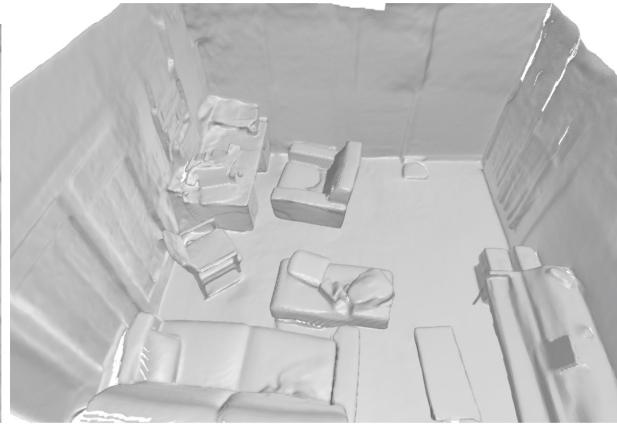
[3] Yariv, Gu, Kasten, Lipman: [Volume rendering of neural implicit surfaces](#). NeurIPS, 2021

Neural Implicit Surfaces with Volume Rendering

VolSDF



MonoSDF



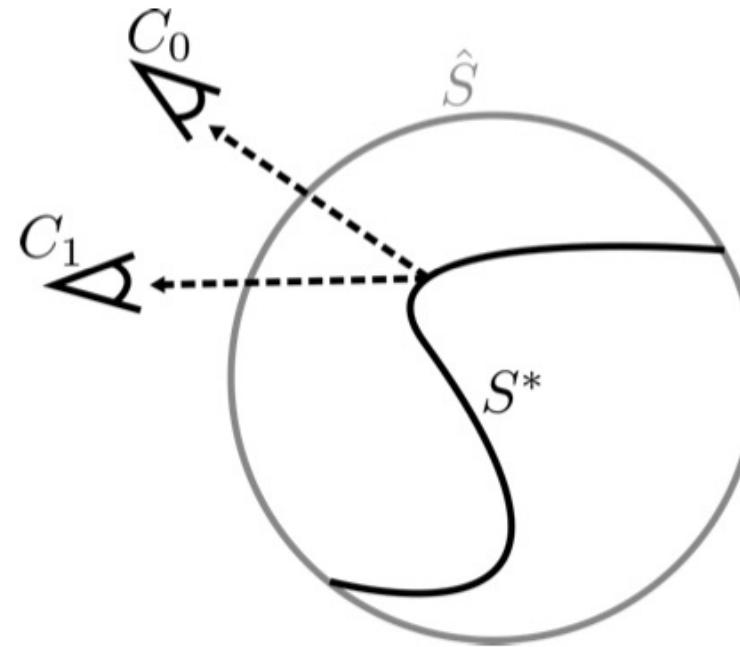
DTU (3 views)

ScanNet (464 views)

Tanks & Temples (298 views)

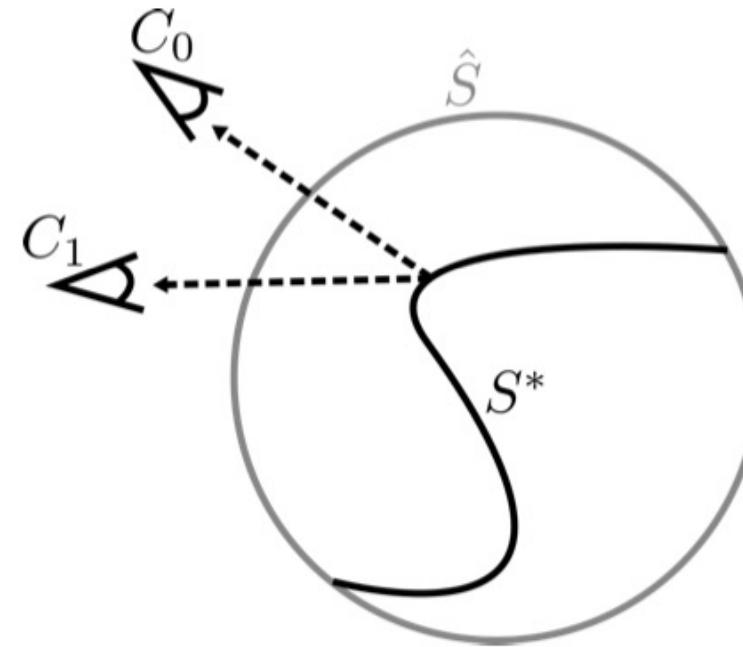
- Fails with sparse input views
- Poor results in large-scale indoor scenes

Shape-Appearance Ambiguity



There exists an infinite number of photo-consistent explanations for input images!

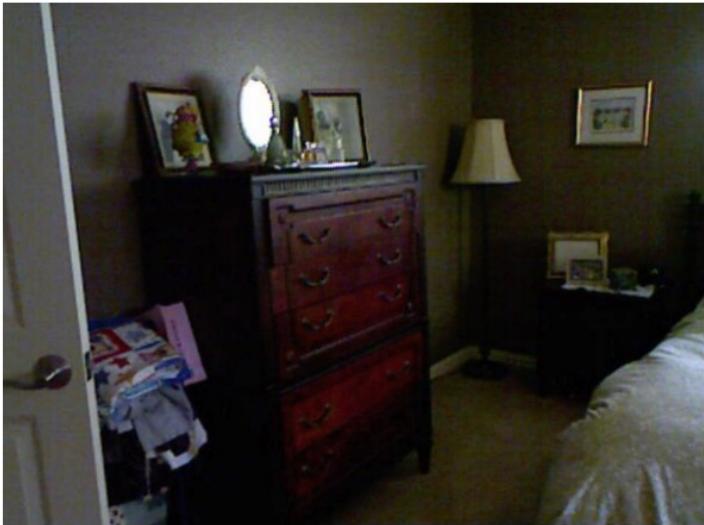
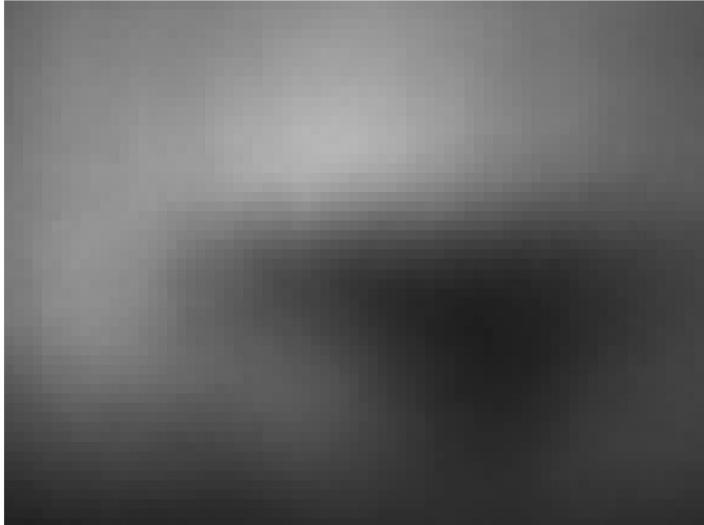
Shape-Appearance Ambiguity



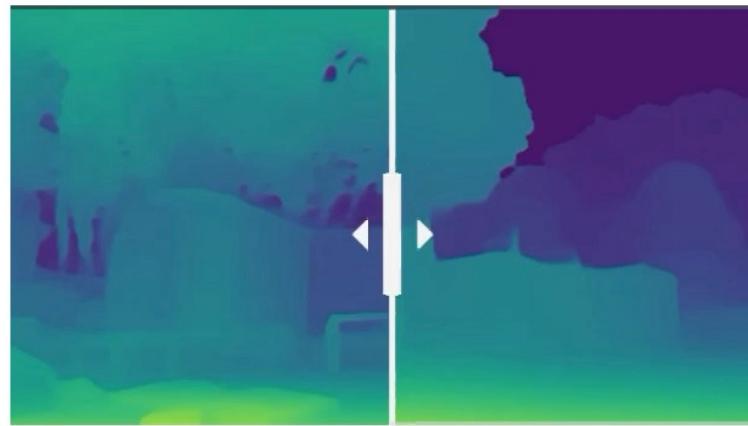
There exists an infinite number of photo-consistent explanations for input images!

→ **Exploit monocular geometric priors**

Depth Map Prediction from a Single Image

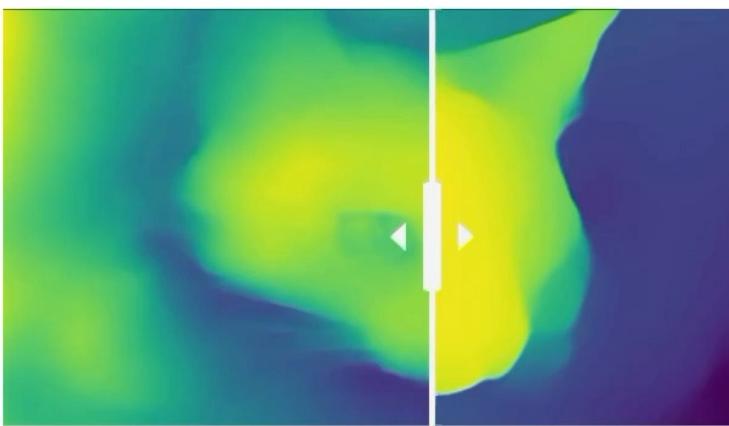


Omnidata



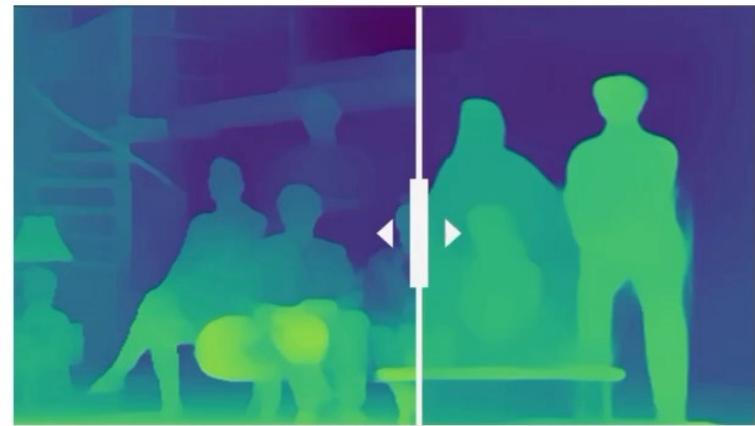
Ours

**MiDaS
DPT-Hybrid**



Ours

**MiDaS
DPT-Hybrid**



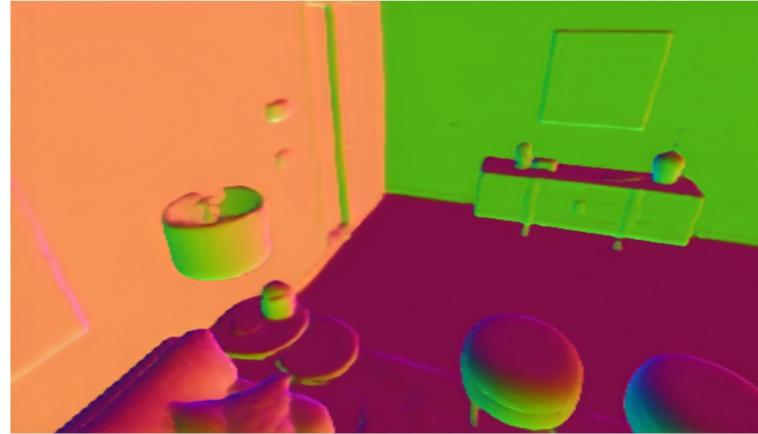
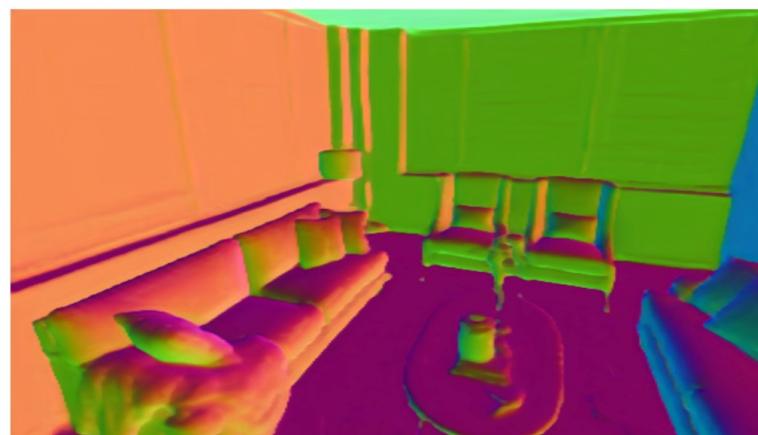
Ours

**MiDaS
DPT-Hybrid**

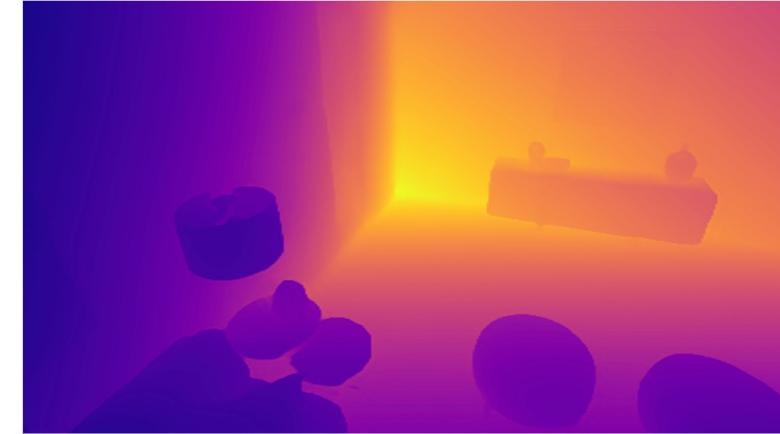
[Ranftl et al. 2021]

Omnidata

RGB Image



Omnidata Normal



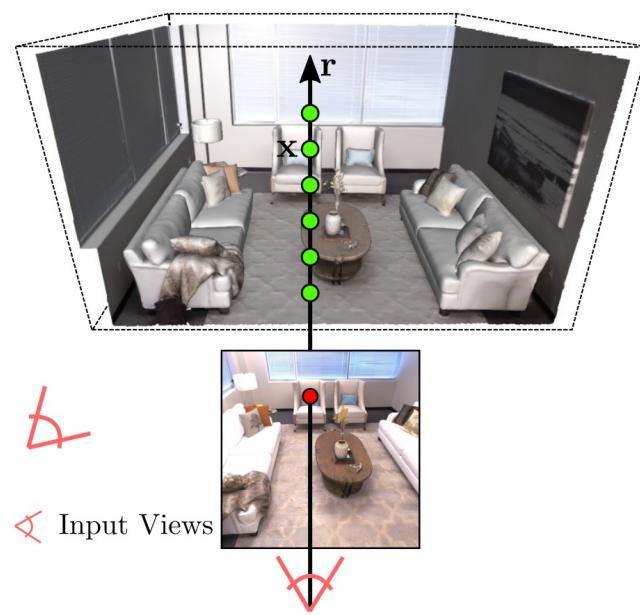
Omnidata Depth

MonoSDF

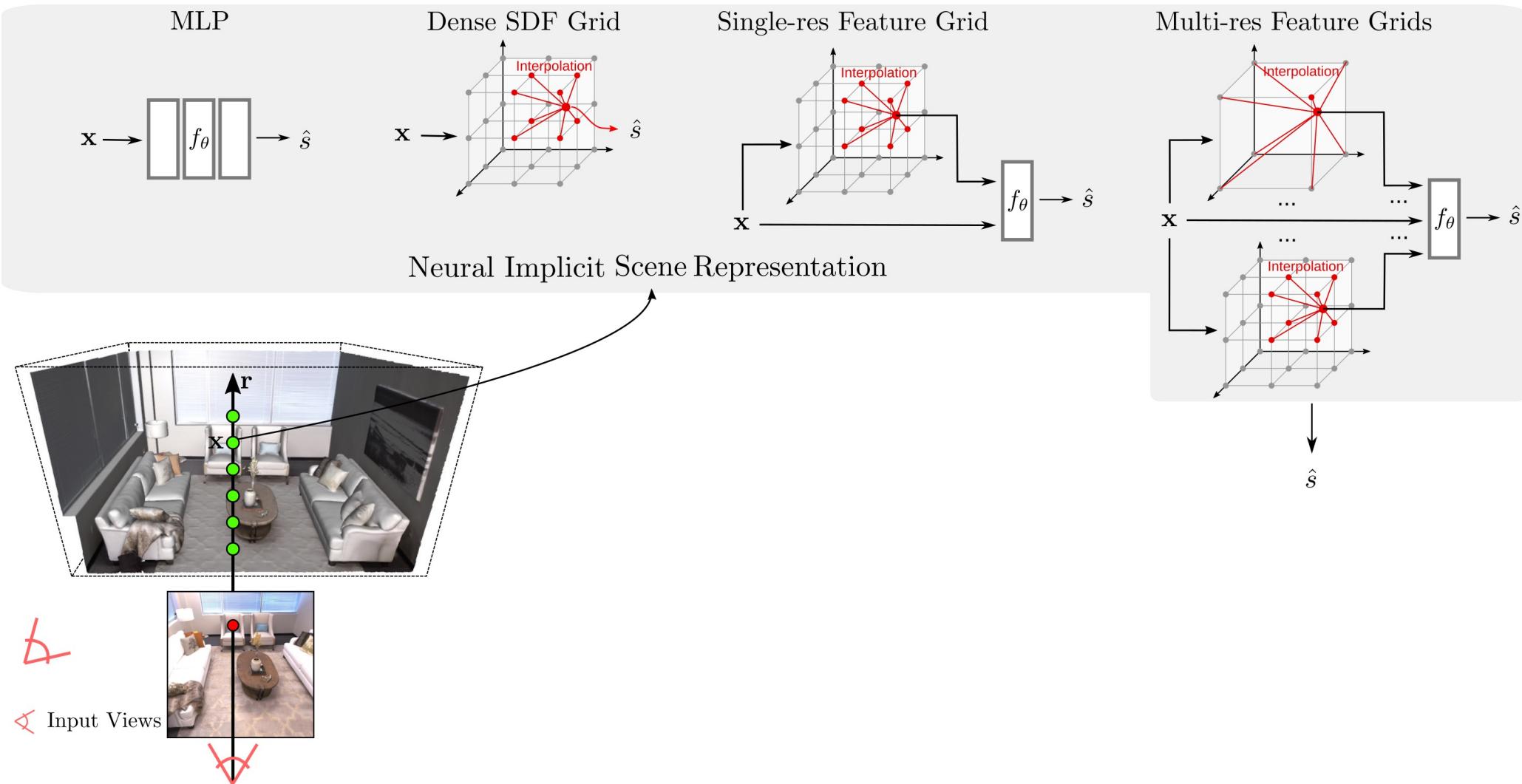
MonoSDF

Input Views

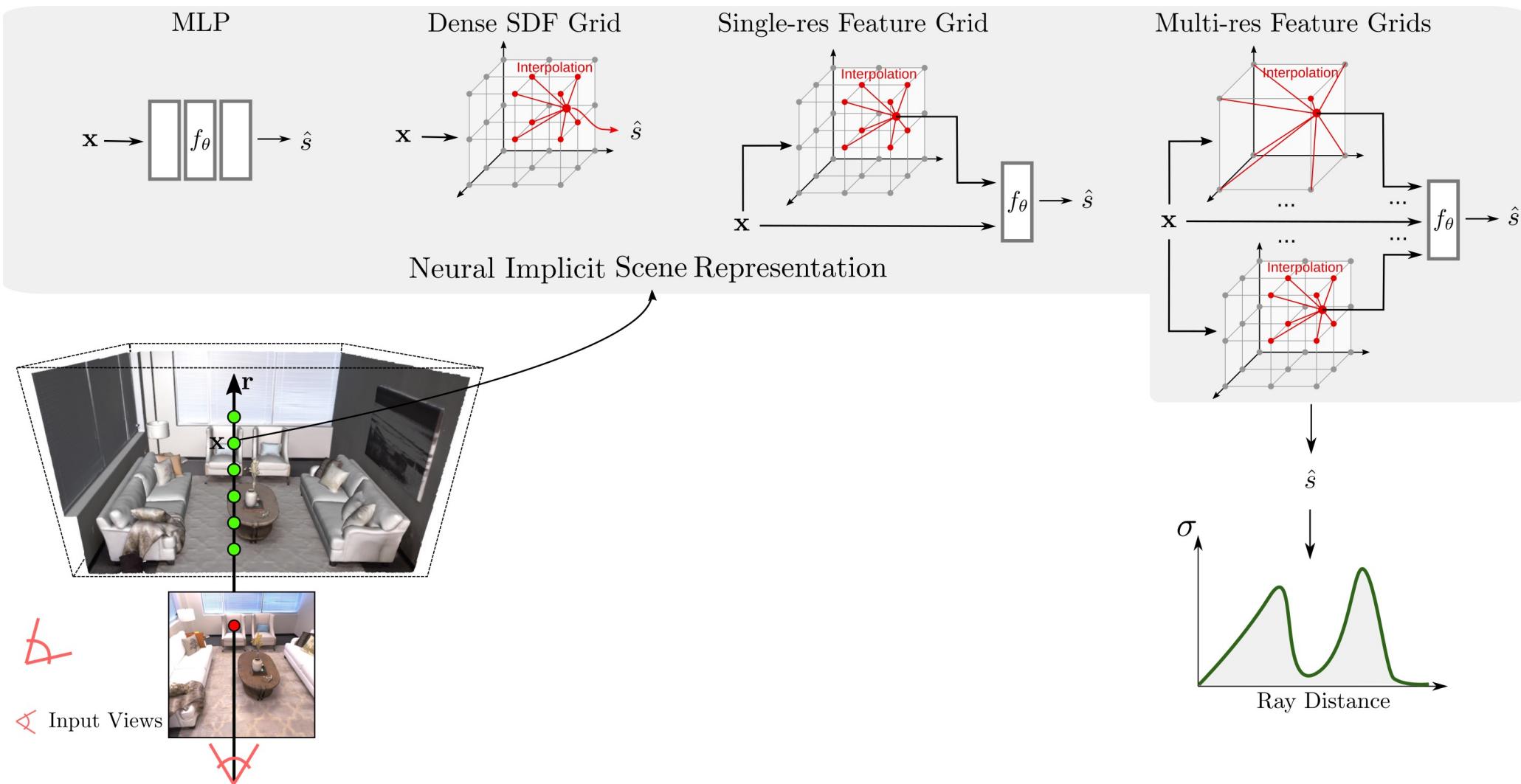
MonoSDF



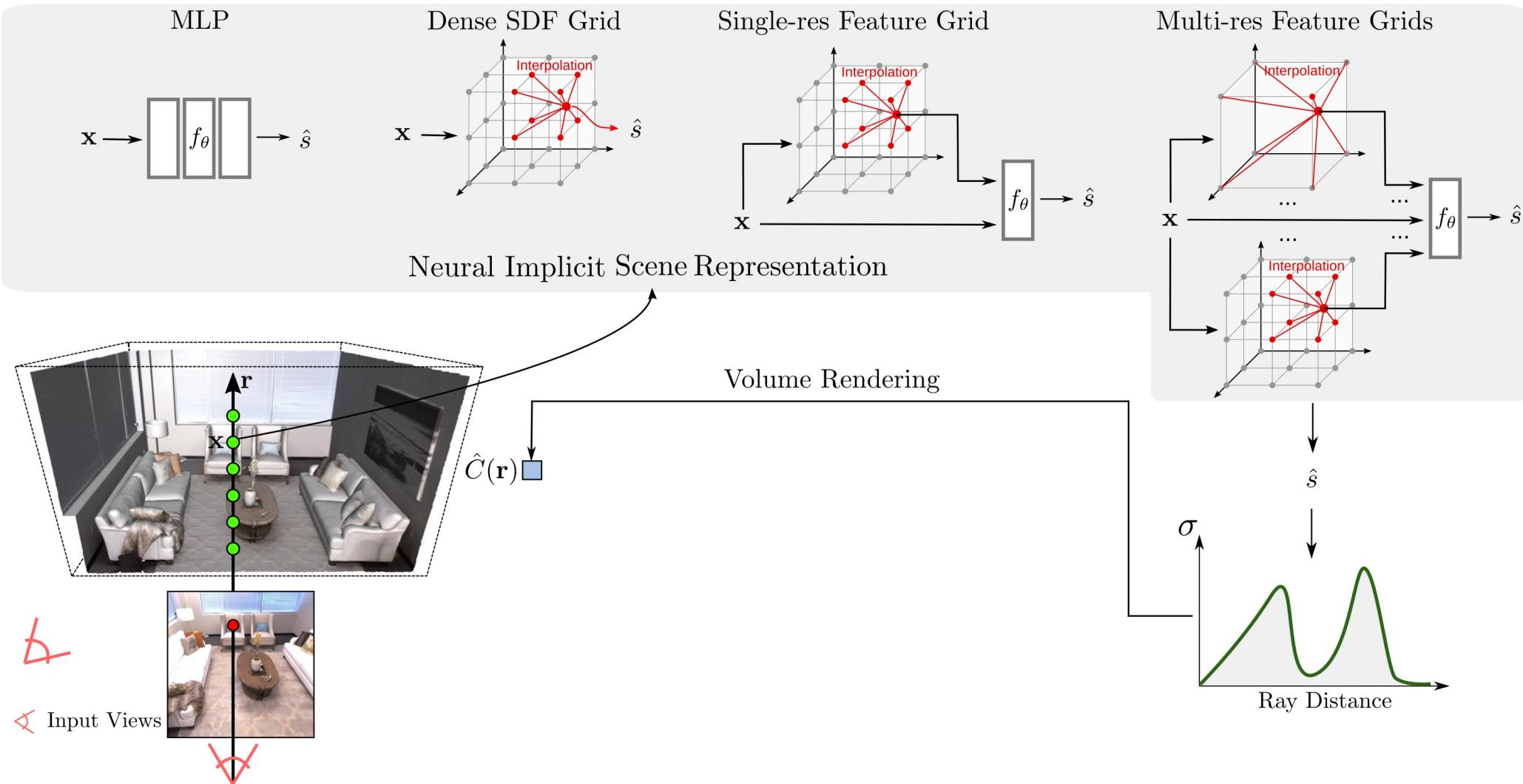
MonoSDF



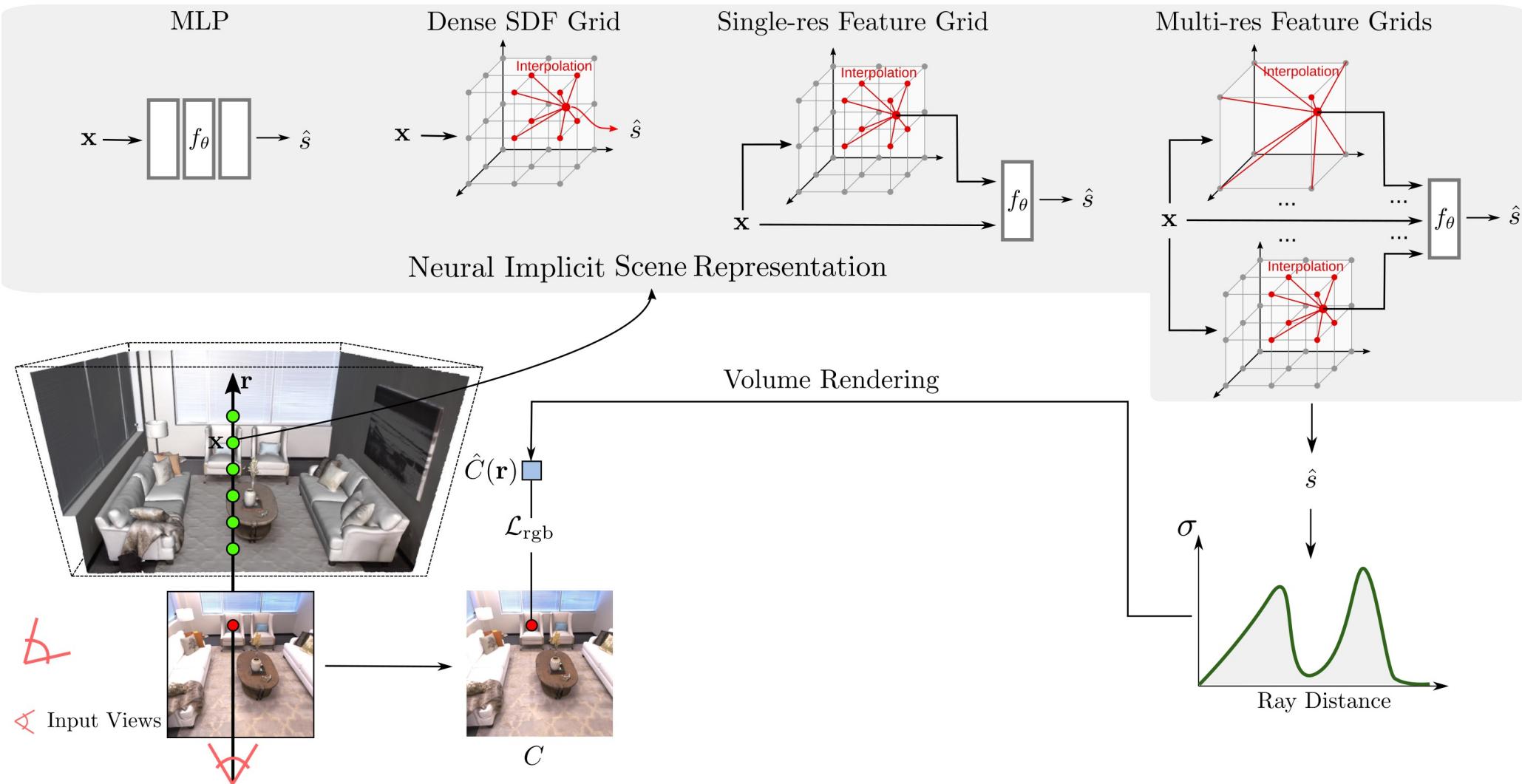
MonoSDF



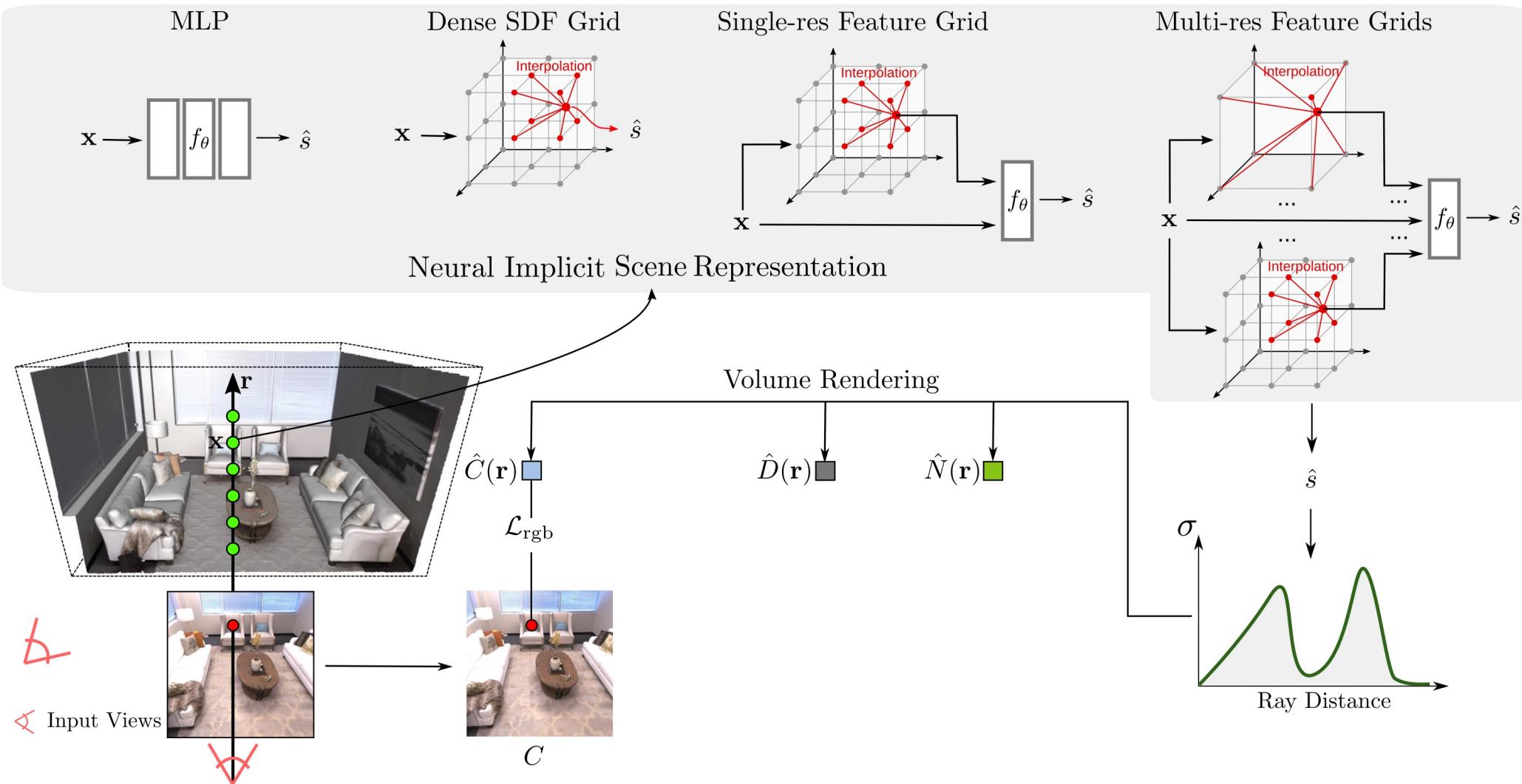
MonoSDF



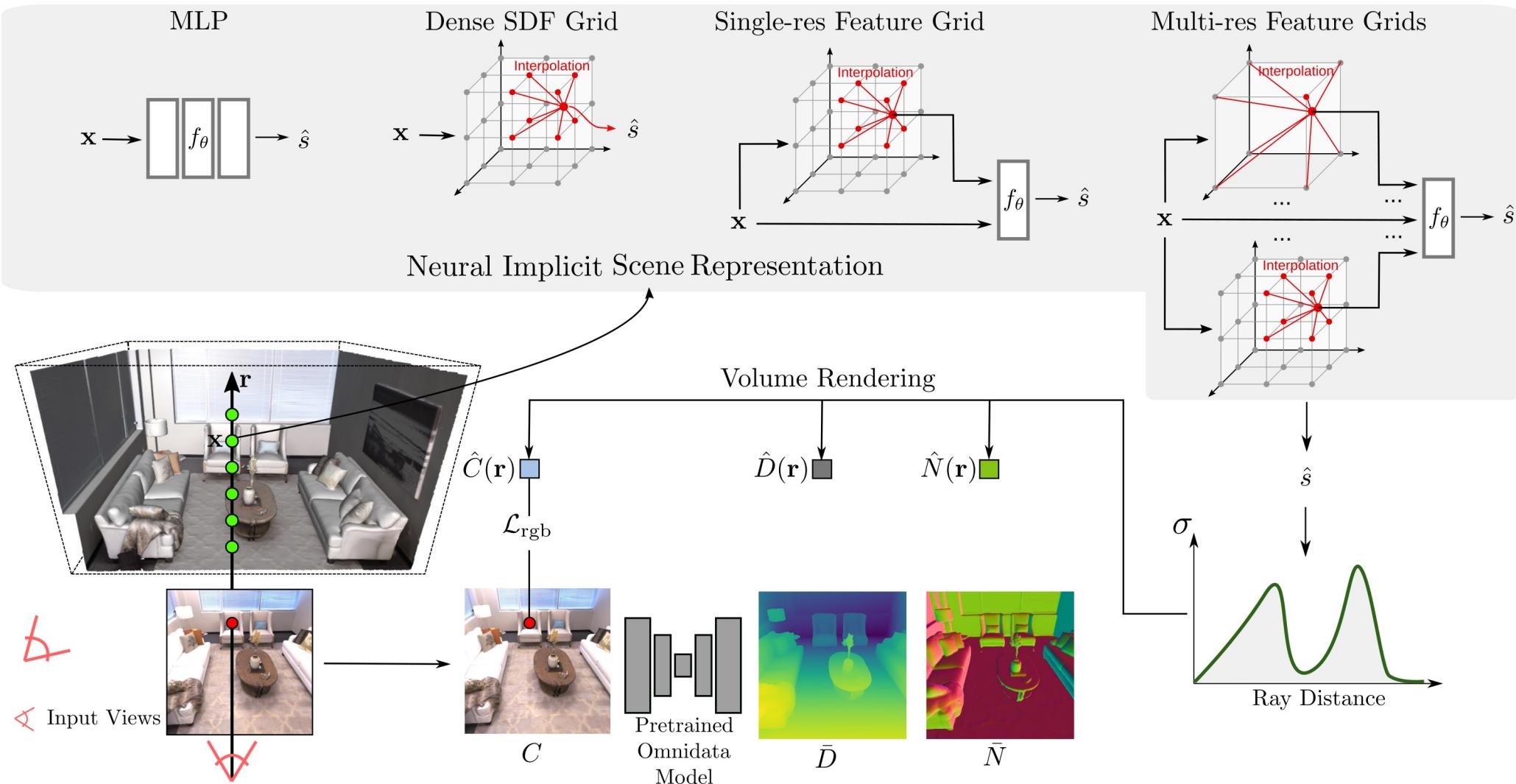
MonoSDF



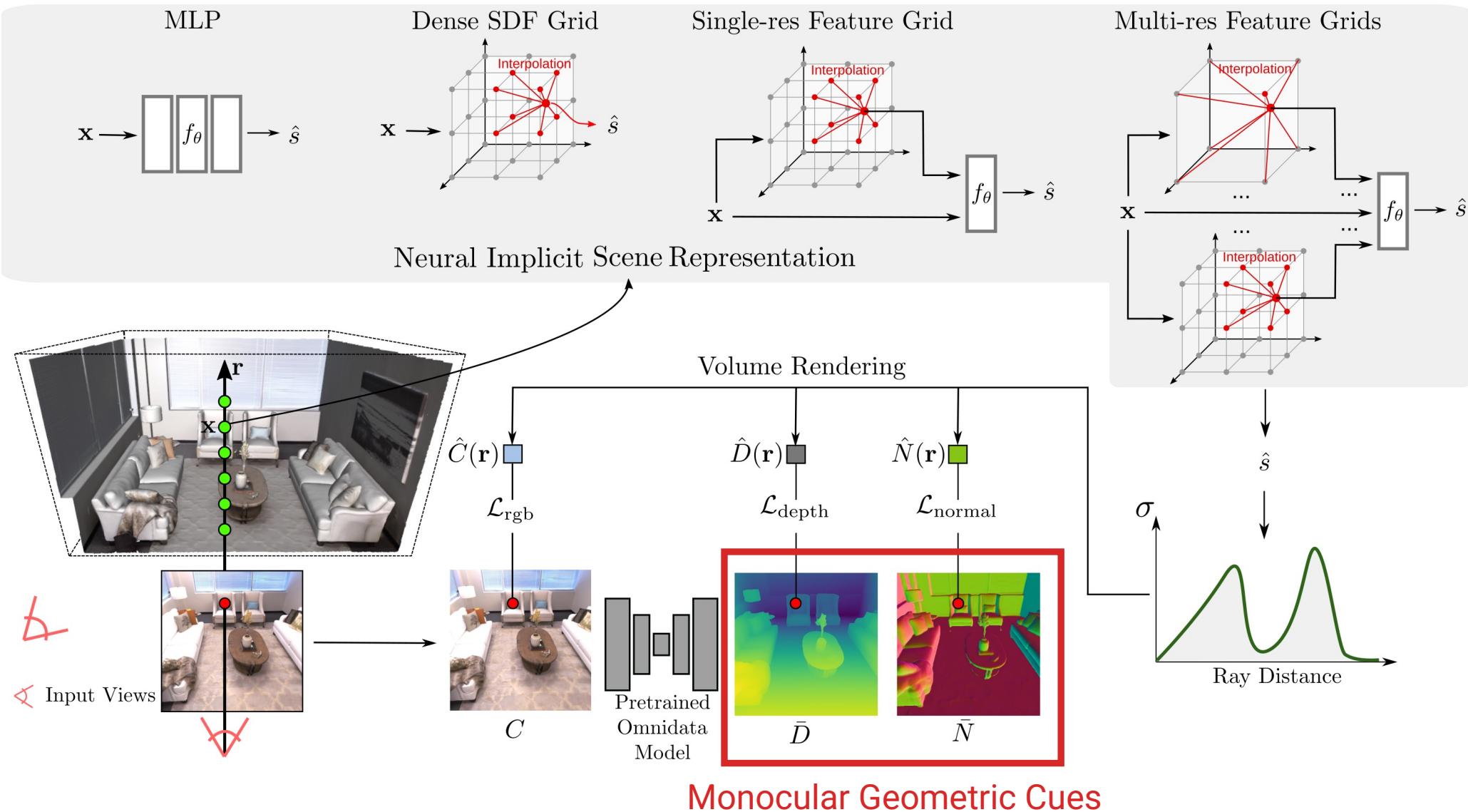
MonoSDF



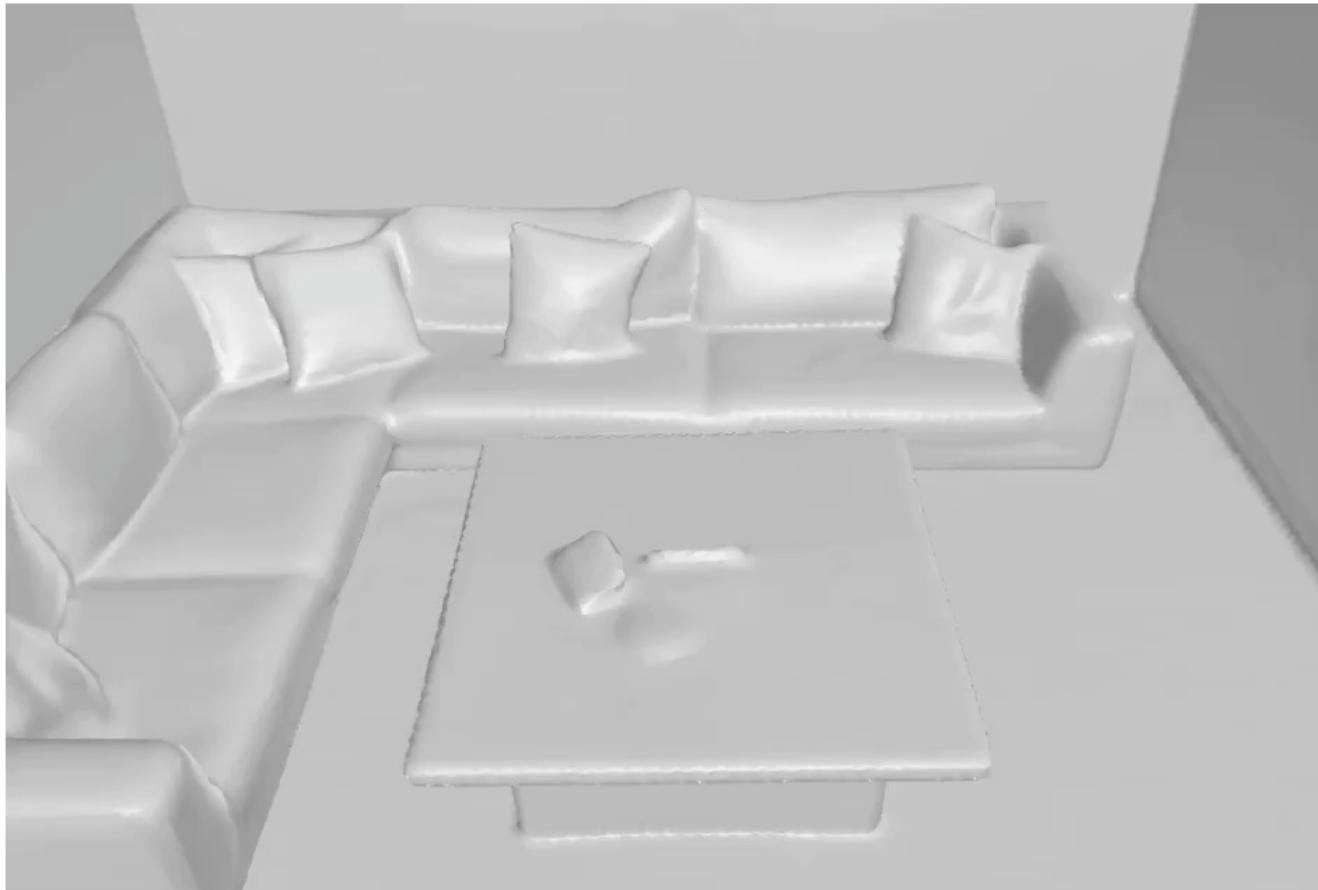
MonoSDF



MonoSDF



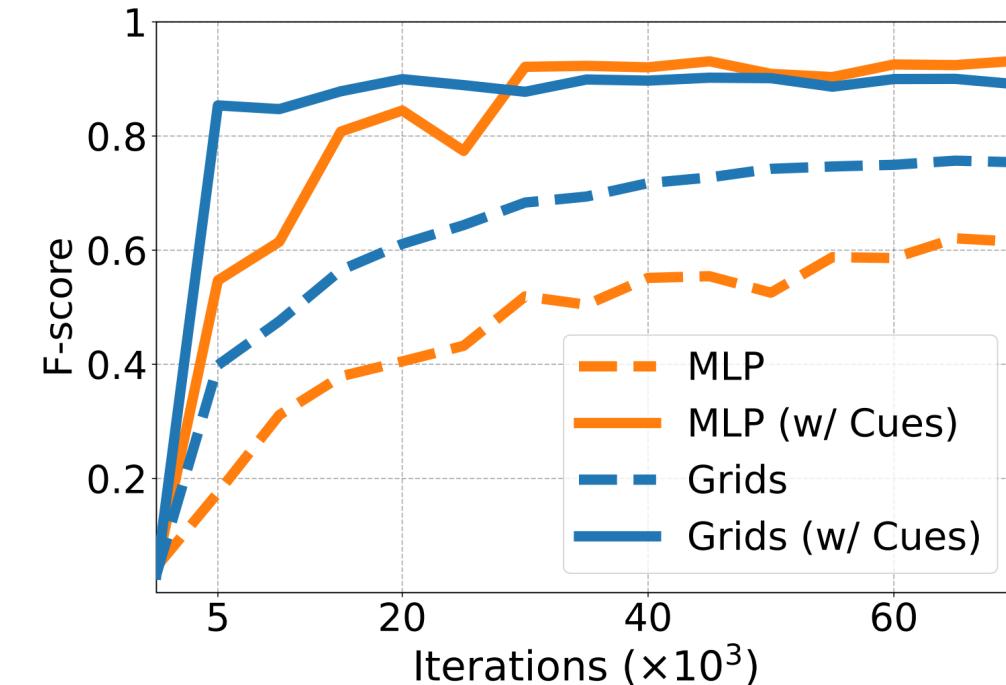
Ablation Study



Depth & Normal Cues

Ablation Study

		Normal C.↑	Chamfer- L_1 ↓	F-score ↑
MLP	No Cues	86.48	6.75	66.88
	Only Depth	90.56	4.26	76.42
	Only Normal	91.35	3.19	85.84
	Both Cues	92.11	2.94	86.18
Multi-Res.	No Cues	87.95	5.03	78.38
	Only Depth	90.87	3.75	80.32
	Only Normal	89.90	3.61	81.28
	Both Cues	90.93	3.23	85.91
Grids	No Cues	87.95	5.03	78.38
	Only Depth	90.87	3.75	80.32
	Only Normal	89.90	3.61	81.28
	Both Cues	90.93	3.23	85.91



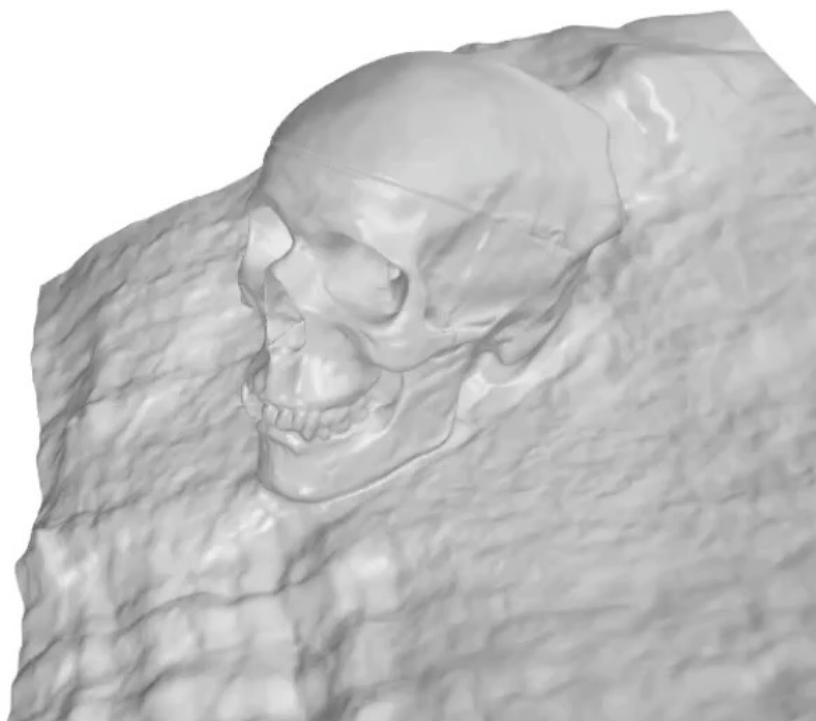
- ! Monocular cues improve reconstruction results significantly
- ! Combining depth & normal leads to best performance
- ! Monocular cues can improve convergence speed

Baseline Comparisons on ScanNet

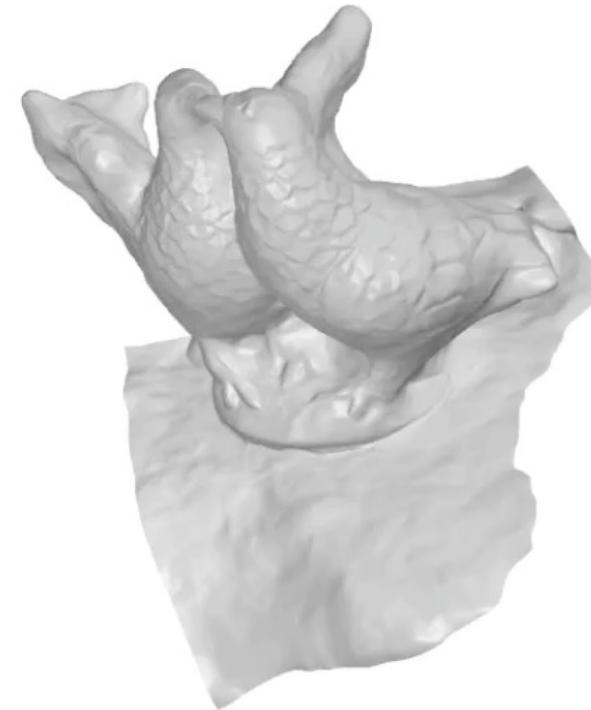
Ours

Ours

Baseline Comparisons on DTU (3-views)



Ours



Ours

Baseline Comparisons on DTU (all views)

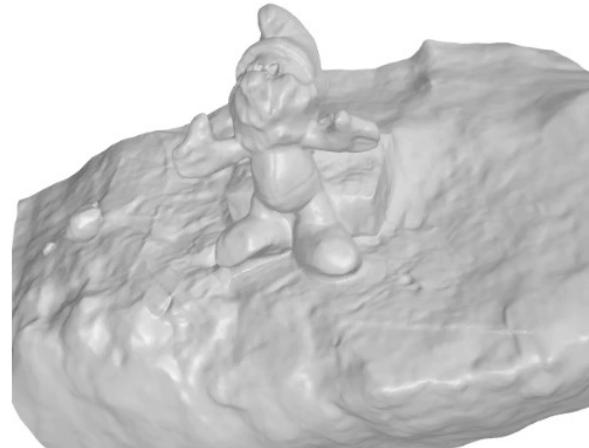
Ours (Grids)

Multi-Res. Feature Grids with High-Res. Cues

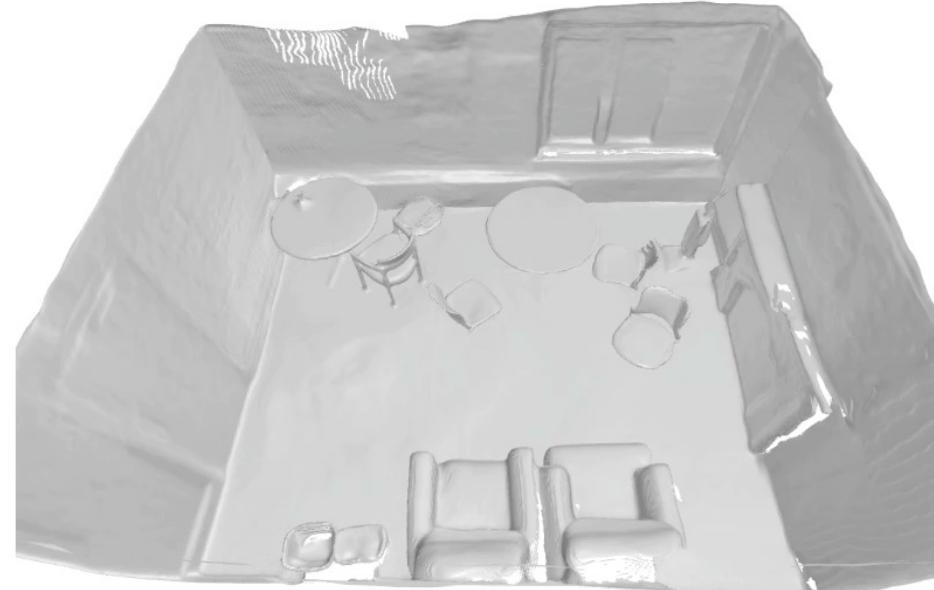


Take-home Message

<https://niujinshuchong.github.io/monosdf/>



DTU (3 views)



ScanNet

Tanks and Temples

- ! Monocular cues improve reconstruction results and speed up optimization
- ! Analysis and investigate multiple scene representations
- ! **Limitation:** Still require camera poses given :(

NICE-SLAM

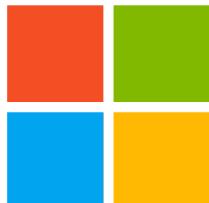
Neural Implicit Scalable Encoding for SLAM

CVPR 2022

Zihan Zhu* Songyou Peng* Viktor Larsson Weiwei Xu Hujun Bao
Zhaopeng Cui Martin R. Oswald Marc Pollefeys

* Equal Contributions

ETH zürich



RGB-D Sequences

40x Speed

iMAP

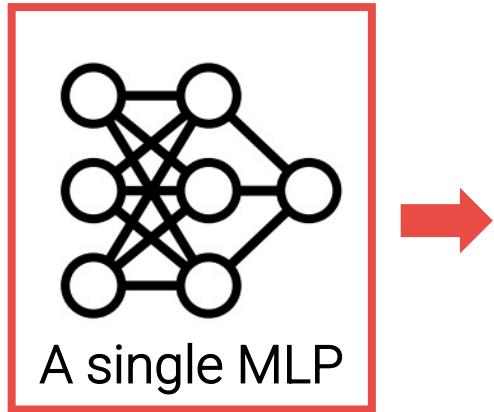
[Sucar et al., ICCV'21]



First neural implicit-based **online** SLAM system

iMAP

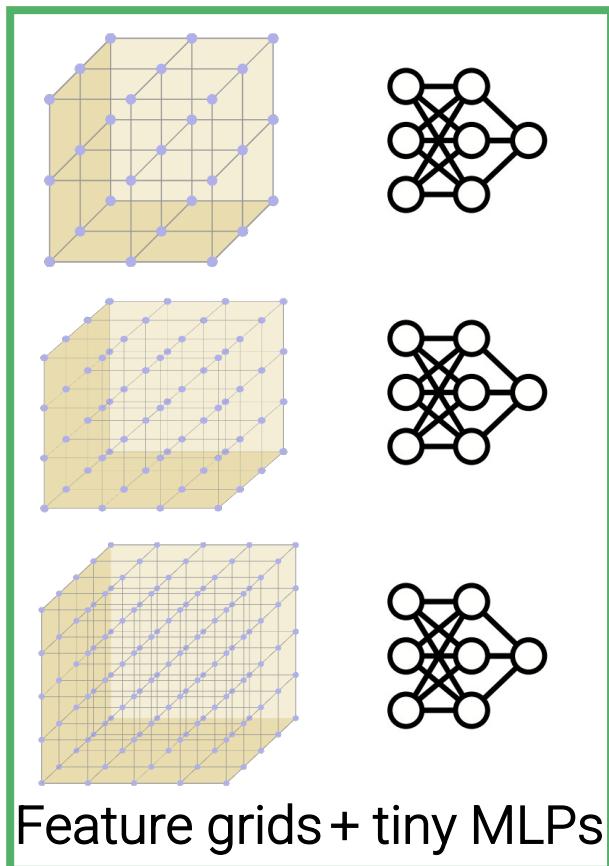
[Sucar et al., ICCV'21]



- Fail when scaling up to larger scenes
- Global update → Catastrophic forgetting
- Slow convergence

— Predicted Poses
— GT Poses

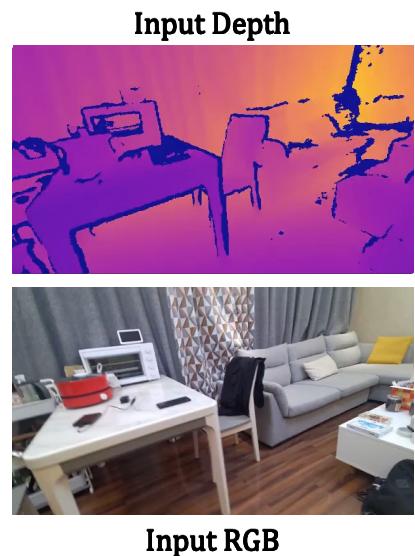
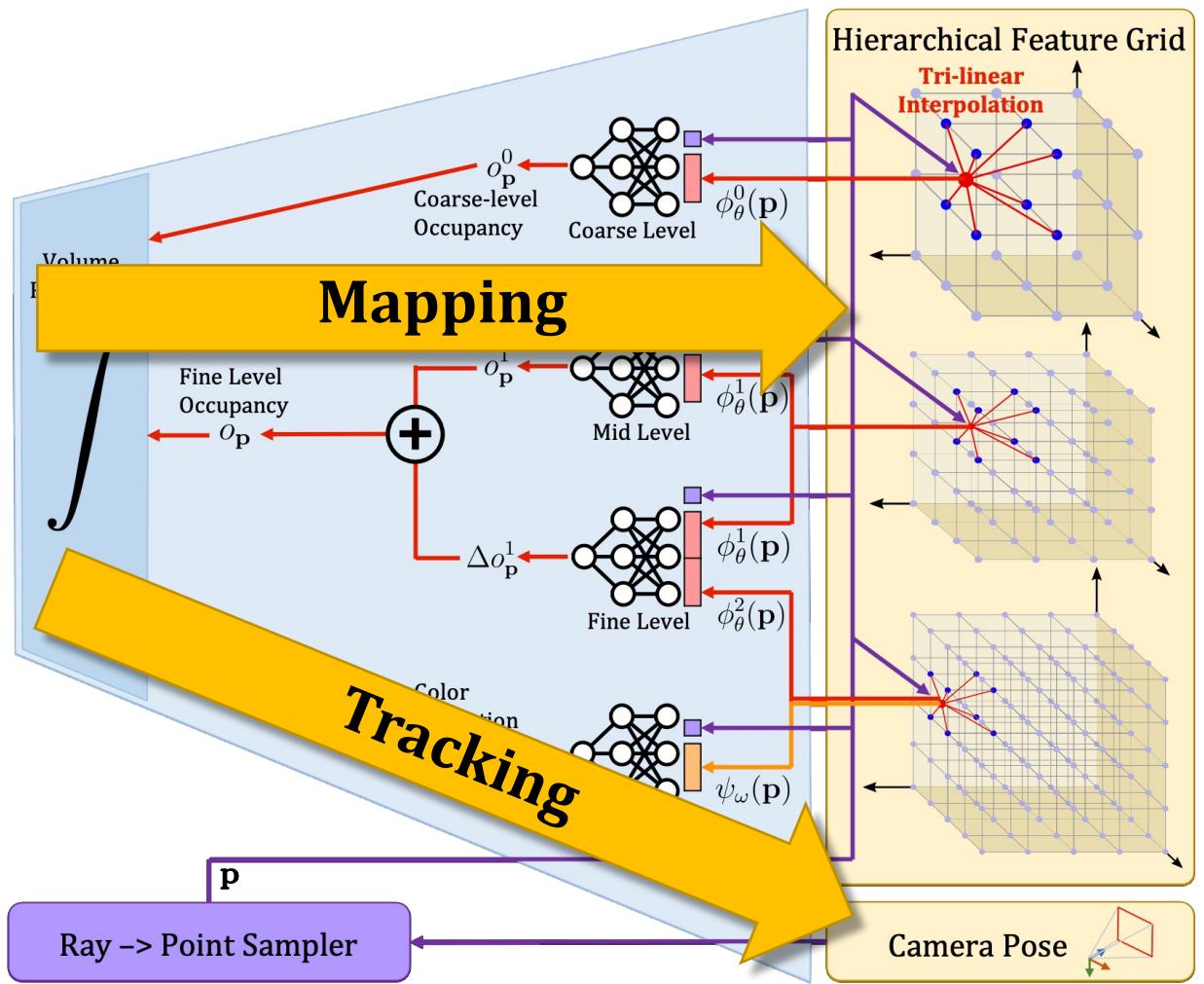
NICE-SLAM



- Applicable to large-scale scenes
- Local update → No forgetting problem
- Fast convergence

— Predicted Poses
— GT Poses

Pipeline



Results

iMAP*

(our re-implementation of iMAP)

NICE-SLAM

4x Speed

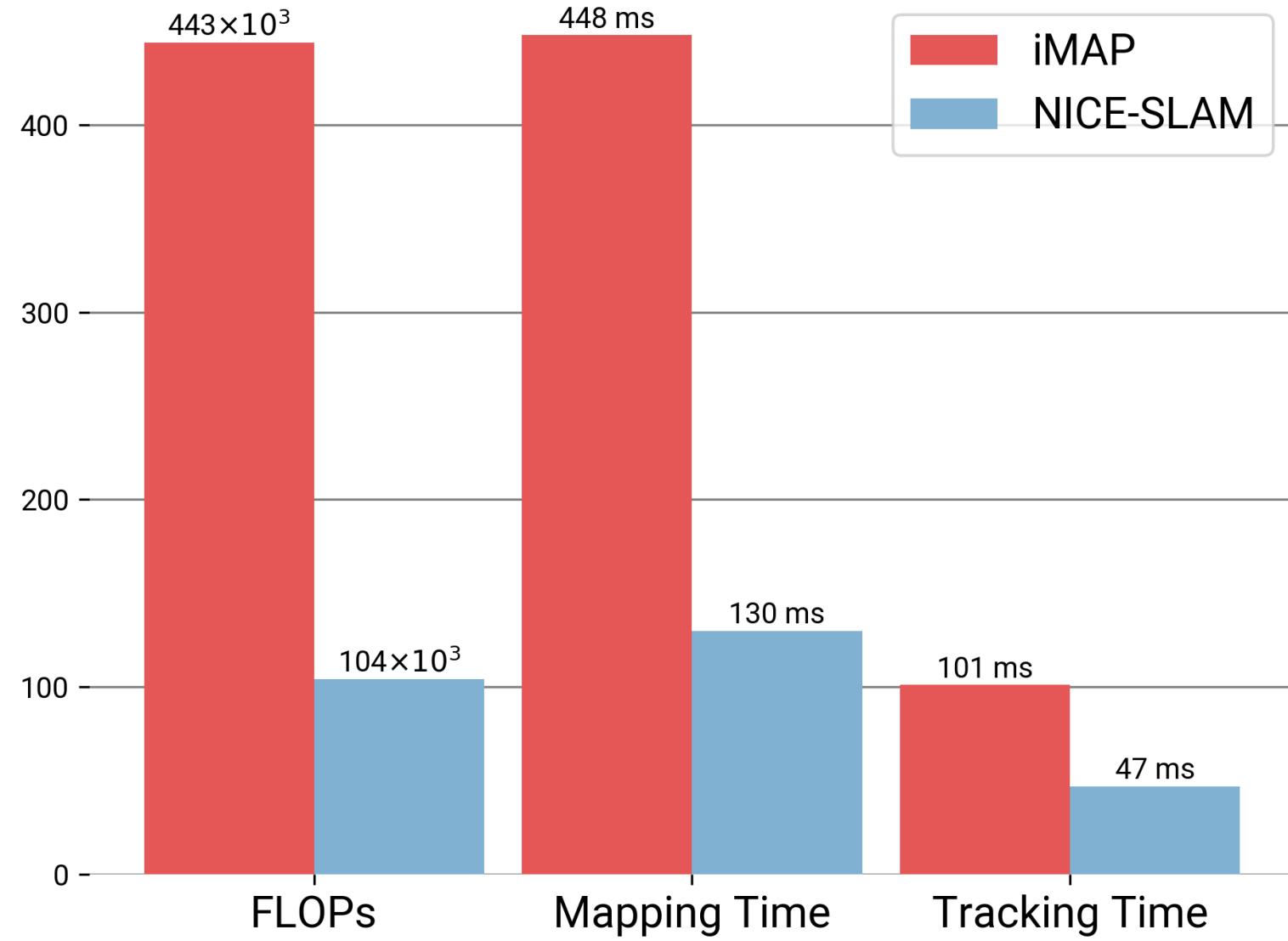
— Predicted Poses
— GT Poses

iMAP*

(our re-implementation of iMAP)

NICE-SLAM

10x Speed



Take-home Message

- A NICE online implicit SLAM system for indoor scenes
- Hierarchical feature grids + a tiny MLP seems to be a trend!
 - Instant-NGP [TOG'22]

Limitations

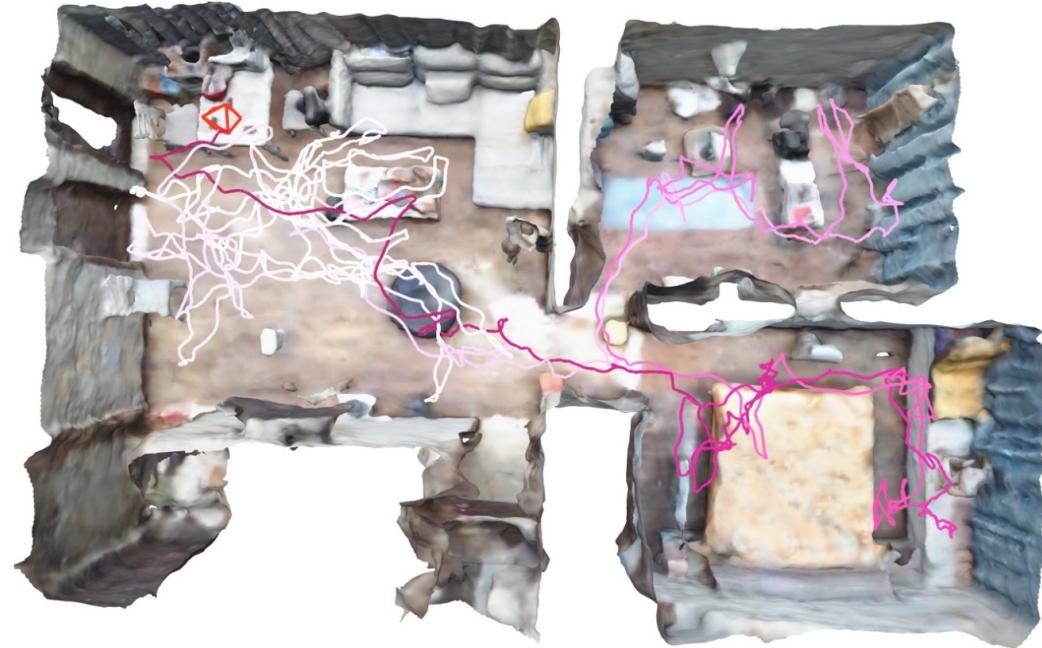
- Requires depths as input
- Only bounded scenes
- Still not real-time

Final Remarks

- NeRF-based multi-view surface reconstruction still has rooms to improve
- A completely COLMAP-free NeRF pipeline?
- What is THE representation?

Large-scale Scene Reconstruction with NeRF

MonoSDF
github.com/autonomousvision/monosdf



NICE-SLAM
github.com/cvg/nice-slam

Thank you!