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My PhD Topics: Neural Scene Representations
for 3D reconstruction, novel view synthesis, and SLAM

runs now at 50 fps on a GTX 1080 Ti Ours
Convolutional Occupancy Networks KiloNeRF UNISURF
ECCV 2020 (Spotlight) ICCV 2021 ICCV 2021 (Oral)

Ours

Shape As Points MonoSDF NICE-SLAM
NeurlPS 2021 (Oral) NeurlPS 2022 CVPR 2022




NeRF Is awesomel

Some problems still exist...

@ Poor underlying geometry @ MonoSDF
@ Camera poses needed @ NICE-SLAM

Mildenhall*, Srinivasan*, Tancik* et al: NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. ECCV 2020
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Neural Implicit Surfaces with Volume Rendering
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[1] Oechsle, Peng, Geiger: UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction. ICCV, 2021
[2] Wang, Liu, Liu, Theobalt, Komura, Wang: NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction. NeurlPS, 2021
[3] Yariv, Gu, Kasten, Lipman: Volume rendering of neural implicit surfaces. NeurlPS, 2021




MonoSDF
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= Fails with sparse input views
= Poor results in large-scale indoor scenes

Yariv, Gu, Kasten, Lipman: Volume rendering of neural implicit surfaces. NeurIPS, 2021




Shape-Appearance Ambiguity

There exists an infinite number of photo-consistent explanations for input images!

Zhang, Riegler, Snavely, Koltun: NeRF++: Analyzing and Improving Neural Radiance Fields. ArXiv, 2020




Shape-Appearance Ambiguity

There exists an infinite number of photo-consistent explanations for input images!

— > Exploit monocular geometric priors

Zhang, Riegler, Snavely, Koltun: NeRF++: Analyzing and Improving Neural Radiance Fields. ArXiv, 2020




Depth Map Prediction from a Single Image

Eigen, Puhrsch and Fergus: Depth Map Prediction from a Single Image using a Multi-Scale Deep Network. NIPS, 2014



Omnidata
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[Ranftl et al. 2021]

Eftekhar, Sax, Malik and Zamir: Omnidata: A Scalable Pipeline for Making Multi-Task Mid-Level Vision Datasets from 3D Scans. ICCV, 2021.




Omnidata

RGB Image Omnidata Normal Omnidata Depth

Eftekhar, Sax, Malik and Zamir: Omnidata: A Scalable Pipeline for Making Multi-Task Mid-Level Vision Datasets from 3D Scans. ICCV, 2021.




MonoSDF
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MonoSDF

MLP Dense SDF Grid Single-res Feature Grid Multi-res Feature Grids
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MonoSDF

MLP Dense SDF Grid Single-res Feature Grid Multi-res Feature Grids
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MonoSDF
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MonoSDF
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MonoSDF

MLP Dense SDF Grid Single-res Feature Grid Multi-res Feature Grids

Interpolation| | interpblation ]

A 7

A
Al
o~ ’ N
X_)DD_“ == g . AP —
/ / | L5 | l//
“ ‘ fol— 3§ ...’ .
X > >|fo| — §

terpolatig
/

X
Neural Implicit Scene Representation y I o e
—
Volume Rendering 7

D(r) N(r)

\

Ray Distance

Pretrained

Omnidata D
Model




MonoSDF
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Ablation Study

Depth & Normal Cues



Ablation Study

Normal C.1 Chamfer-L; | F-score 1

No Cues 86.48 6.75 66.88

MLP Only Depth 90.56 4.26 76.42
Only Normal  91.35 3.19 85.84

Both Cues 92.11 2.94 86.18

No Cues 87.95 5.03 78.38

Multi-Res. Only Depth 90.87 3.75 80.32
Grids Only Normal 89.90 3.61 81.28
Both Cues 90.93 3.23 85.91
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Iterations (x103)

Monocular cues improve reconstruction results significantly

Combining depth & normal leads to best performance

Monocular cues can improve convergence speed



Baseline Comparisons on ScanNet
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Baseline Comparisons on DTU (3-views)

Ours



Ours (Grids)



Multi-Res. Feature Grids with High-Res. Cues




Take-home Message https://niujinshuchong.github.io/monosdf/

B
»

Do

DTU (3 views) ScanNet o Tas and Teples

! Monocular cues improve reconstruction results and speed up optimization
! Analysis and investigate multiple scene representations
! Limitation: Still require camera poses given :(


https://niujinshuchong.github.io/monosdf/
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RGB-D Sequences

40x Speed



IMAP

[Sucar et al., ICCV'21]

First neural implicit-based online SLAM system



A single MLP

IMAP

[Sucar et al., ICCV'21]

== Fail when scaling up to larger scenes

== (lobal update - Catastrophic forgetting
== Slow convergence

Predicted Poses

—— GT Poses



Feature grids + tiny MLPs

NICE-SLAM

== Applicable to large-scale scenes

*= Local update - No forgetting problem
== Fast convergence

Predicted Poses

—— GT Poses



Pipeline
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Results



IMAP* NICE-SLAM

(our re-implementation of iIMAP)

4x Speed

Predicted Poses

—— GT Poses



IMAP* NICE-SLAM

(our re-implementation of iIMAP)

10x Speed
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Take-home Message

* A NICE online implicit SLAM system for indoor scenes

 Hierarchical feature grids + a tiny MLP seems to be a trend!
* Instant-NGP [TOG'22]

Limitations
» Requires depths as input
« Only bounded scenes

e Still not real-time



Final Remarks

« NeRF-based multi-view surface reconstruction still has rooms to improve
« A completely COLMAP-free NeRF pipeline?

* What is THE representation?



Large-scale Scene Reconstruction with NeRF
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MonoSDF NICE-SLAM
github.com/autonomousvision/monosdf github.com/cvg/nice-slam

Thank you!
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https://github.com/cvg/nice-slam
https://github.com/autonomousvision/monosdf

